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Abstract

Aerosol emissions from vegetation fires have a large impact on air quality and climate.
In this study, we use published experimental data and different fitting procedures to de-
rive dynamic particle number and mass emission factors (EFPN, EFPM) related to the
fuel type, burning conditions and the mass of dry fuel burned, as well as characteristic5

CO-referenced emission ratios (PN/CO, PM/CO). Moreover, we explore and charac-
terize the variability of the particle size distribution of fresh smoke, which is typically
dominated by a lognormal accumulation mode with count median diameter around 120
nm (depending on age, fuel and combustion efficiency), and its effect on the relation-
ship between particle number and mass emission factors.10

For the particle number emission factor of vegetation fires, we found no depen-
dence on fuel type and obtained the following parameterization as a function of mod-
ified combustion efficiency (MCE): EFPN=34·1015×(1-MCE) kg−1±1015 kg−1 with re-
gard to dry fuel mass (d.m.). For the fine particle mass emission factors (EFPM) we
obtained (86–85×MCE) g kg−1±3 g kg−1 as an average for all investigated fires; (93–15

90×MCE) g kg−1±4 g kg−1 for forest; (67–65×MCE) g kg−1±2 g kg−1 for savanna; (63–
62×MCE) g kg−1±1 g kg−1 for grass.

For the PN/CO emission ratio we obtained an average of (34±16) cm−3 ppb−1

exhibiting no systematic dependence on fuel type or combustion efficiency. The
average PM/CO emission ratios were (0.09±0.04) g g−1 for all investigated fires,20

(0.13±0.05) g g−1 for forest; (0.08±0.03) g g−1 for savanna; and (0.07±0.03) g g−1 for
grass.

The results are consistent with each other, given that particles from forest fires are
on average larger than those from savanna and grass fires. This assumption and the
above parameterizations represent the current state of knowledge, but they are based25

on a rather limited amount of experimental data which should be complemented by
further measurements. Nevertheless, the presented parameterizations appear suffi-
ciently robust for exploring the influence of vegetation fires on aerosol particle number
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and mass concentrations in regional and global model studies.

1 Introduction

Aerosol particle emissions from vegetation fires have large impacts on both climate and
air quality (Yokelson et al., 2007; Andreae and Crutzen, 1997; Andreae et al., 2004).
During burning periods, the visibility in affected areas can be heavily reduced, and the5

health effects on the local populations can be substantial. Biomass burning particles
are efficient cloud condensation nuclei (CCN) and can influence the formation of clouds
and precipitation (Luderer et al., 2006; Trentmann et al., 2006; Kivekäs, 2008; Reid et
al., 2005; Reutter et al., 2009; Roberts et al., 2002; Rissler et al., 2004, Feingold et al.,
2001; Asa-Awuku et al., 2008; Rose et al., 2008; Rosenfeld et al., 2008).10

There is a growing interest in the indirect aerosol effect in climate models, but to fully
represent the effect of aerosol emissions on the cloud properties, improved particle
number emission factors are needed (Andreae and Rosenfeld, 2008; Fuzzi et al., 2006;
Lohmann et al., 2007). Currently, emission factors are mainly related to fuel types, but
as the understanding of the fire process increases, the emission factors are not just15

treated as pure averages over the fire but can be related to fire properties as well (Hu
et al., 2008; van der Werf et al., 2006; Schultz et al., 2008; Thonicke and Cramer, 2006;
Hodzic et al., 2007). In this way, changes in the fire process due to, e.g., meteorological
effects can also be taken into account in the models.

Particle emissions from biomass burning are dominated by an accumulation mode,20

with a count median diameter of 100–150 nm, together with two smaller modes; a
coarse mode, and occasionally also a nucleation mode (Reid et al., 2005). The com-
position of the particles depends both on the fuel and on the burning process. The
coarse mode particles consist of dust, carbon aggregates, ash and unburned parts of
the fuel (Hungershoefer et al., 2008; Formenti et al., 2003; Gaudichet et al., 1995),25

while the accumulation mode consists mostly of organic matter, with soot carbon and
inorganic species making up ∼10% each (Reid et al., 2005). Of the organic matter 40–
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80% is water soluble and 20–40% consists of acids (Reid et al., 2005), while alcohols
and sugars, e.g., levoglucosan, make up less than 5% of the organic matter (Oros et
al., 2006).

In the size range between the coarse and the accumulation modes, at a particle
diameter around 1µm, the emissions of both particle number and particle mass are5

minor (Radke et al., 1991; Falkovich et al., 2005; Hardy et al., 1996; Hays et al.,
2005). This study focuses on the accumulation mode with a count median diameter
around 120 nm and a mass median diameter around 240 nm, which includes most of
the particles, both by number and mass (Reid et al., 2005).

The particle size distribution of biomass burning emissions is extremely dynamic in10

the initial plume. Close to the fire, i.e., less than a few minutes away, a nucleation
mode is often present. It is mainly detected in laboratory studies (Hays et al., 2005;
Wardoyo et al., 2006; Keshtkar and Ashbaugh, 2007), but also in the field (Formenti et
al., 2003; Sinha et al., 2003). These particles can be numerous, but have almost no
mass and little influence on aerosol optical properties and CCN activity. Normally at a15

timescale of minutes up to half an hour, the nucleation mode particles transfer into the
accumulation mode.

Compared to the accumulation mode, the coarse particles are few, but can make up
a significant fraction of the particle mass. Most of the data show a limited amount of
coarse particles in the biomass plume (Reid et al., 2005; Schafer et al., 2008), e.g., a20

ratio of PM10 to PM2.5 of 1.3±0.2 for vegetation fire plumes compared to 2.4±0.5 for
background conditions in Montana (Ward et al., 2006). Radke et al. (1991) found that,
on average, the coarse mode accounts for about 20% of the mass of smoke aerosol
emitted. Particles in smoke plumes can reach quite large sizes: Instrumental observa-
tions show continuous log-normal size distributions reaching the millimeter size range25

(Radke et al., 1990; D. Rosenfeld, unpublished data, 2002), and visual observations of
the fallout below fire plumes frequently show centimeter- to meter-sized objects (ash,
char, burning branches, etc.).

The aim of this study is to parameterize the emission of biomass burning particles
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from vegetation fires. We have compiled all available literature data, present particle
number and mass emission factors and ratios, and relate these to combustion effi-
ciency and fuel type. We have analyzed three fuel types; forest, savanna and grass.
Particle number and particle mass emissions are described separately and related
through particle size distributions. This gives a consistency check on the results ob-5

tained, and also provides a starting point for the continuation of emission studies, both
theoretical and experimental.

2 Definitions and methods

The emission factor (EF) is defined as the amount of aerosol particles that are emitted
per kg of dry fuel mass burned; and is measured either as particle mass (EFPM) or10

as particle number (EFPN). To estimate the amount of fuel in an open vegetation fire,
where weighing of the fuel is not possible for practical reasons, the common approach
is to measure the various carbon species in the smoke. The assumption is made
that all carbon in the burned part of the fuel is found in the smoke, and generally that
the carbon content of the fuel is 45% of the mass (Andreae and Merlet, 2001). The15

other approach used is to scale the particle emissions to carbon monoxide, and to
present CO-referenced emission ratios (PN/CO, PM/CO). PN/CO usually refers to the
particle number concentration at 100 kPa and 298 K divided by the CO concentration
or volume mixing ratio, respectively (common unit: cm−3 ppb−1), while PM/CO is the
ratio of particle and CO mass concentrations (common unit: g g−1).20

The combustion efficiency (CE) of a fire is generally defined as the amount of carbon
released in the form of carbon dioxide divided by the total amount of carbon released.
In many cases only CO and CO2 are measured, and the modified combustion efficiency
(MCE) is used to characterize burning conditions. The MCE is defined as the amount
of carbon released as CO2 divided by the amount of carbon released as CO2 plus25

CO (Yokelson et al., 1996, Eq. 1). The difference between MCE and CE is normally
less than a few percent (e.g. Guyon et al., 2005), and for this study MCE will be used
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exclusively to increase comparability.

MCE = (∆CCO2
)/(∆CCO2

+ ∆CCO) (1)

The particle mass is measured as the collective mass of all particles below a given size
limit, shown here as a subscript to PM (e.g., PM3.5 for particles smaller than 3.5µm),
in analogy with the conventionally defined PM10 and PM2.5.5

Linear fitting methods have been used to find relationships between particle emis-
sions and MCE, and between other parameters in the smoke. Following the recom-
mendations of Cantrell (2008), standard linear least squares fitting was used for the
parameterization of EF as a function of MCE, whereas the bivariate fitting method
described in Cantrell (2008) was used to relate the geometric mean diameter to the10

geometric standard deviation of the lognormal size distribution of smoke particles. F-
statistics has been used to verify relationships found between parameters. From the
F-value and the df value, the probability of erroneously finding a relationship between
two factors of interest, Perr, is calculated using the LINEST and FDIST functions of
Microsoft EXCEL.15

3 Particle size distribution

Biomass burning emissions are mainly in the accumulation mode, and can be de-
scribed by a lognormal size distribution (Hinds, 1998; Seinfeld and Pandis, 2006) with
a count median diameter, Dg (similar to the geometric mean diameter). The fresh
smoke arithmetic mean ± standard deviation is Dg=(117±13) nm and the average ge-20

ometric standard deviation of the particle size distribution is σg=1.7±0.1 (the number
of data point in the average, n=20, Reid et al., 1998; Guyon et al., 2005; Reid and
Hobbs, 1998). For aged smoke Dg=235±40 nm, σg=1.4±0.1 (n=14; Anderson et al.,
1996; Fiebig et al., 2003; Formenti et al., 2002; Petzold et al., 2007; Reid et al., 1998,
Table S1 in the online Supplement http://www.atmos-chem-phys-discuss.net/9/17183/25
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2009/acpd-9-17183-2009-supplement.pdf). Both Dg and σg vary with MCE and are
interrelated.

3.1 Relationship between Dg and MCE

Particles emitted during flaming combustion are commonly larger than those emitted
during smoldering combustion (Reid and Hobbs, 1998; Hobbs et al., 1996; Rissler et5

al., 2006; Hays et al., 2002; Wardoyo et al., 2006). Under very strongly smoldering con-
ditions, particles seem to become larger again, but this applies mainly to peat fires at
very low combustion efficiencies below 0.7 (Iinuma et al., 2007). The particle size rela-
tion to MCE is a linear fit on fresh Brazilian forest smoke (MCE=0.85–0.98, age<4 min,
number of data points n=11, correlation coefficient R2=0.83, Reid and Hobbs, 1998):10

Dg/[nm] = 240 × MCE − 100 (2)

3.2 Relationship between Dg and σg

Figure 1 shows a compilation of published data of Dg and σg for fresh and
aged biomass burning smoke from vegetation fires. Fresh means smoke plumes
younger than ∼1 h; aged smoke data are mostly from plumes older than one15

day (Table S1 in Supplement http://www.atmos-chem-phys-discuss.net/9/17183/2009/
acpd-9-17183-2009-supplement.pdf).

The smoke data have been fitted linearly with a bivariate method (Cantrell, 2008), as
errors exist in both x and y ; and they co-vary without a causative relationship between x
and y for fresh, aged, and all data, respectively (Eqs. 3–5). The standard fitting method20

gives different relations depending on the direction of the fit, i.e., if Dg or σg is at the x-
axis. One of these fits gives approximately the same result as the bivariate fit, while the
relation that differs from the bivariate relation gives less variation in Dg with similar vari-
ation in σg, see Eqs. (S3–S5) in Supplement (http://www.atmos-chem-phys-discuss.
net/9/17183/2009/acpd-9-17183-2009-supplement.pdf). The correlation between Dg25

17189

http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf
http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf


ACPD
9, 17183–17217, 2009

Biomass burning
aerosol emissions

from vegetation fires

S. Janhäll et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

and σg increases when including data for aged smoke (R2=0.30, n=20, Eq. (3) for

fresh smoke, R2=0.52, n=14, Eq. (4) for aged smoke and R2=0.80, n=34, Eq. (5) for
the overall data set). The fresh data is the focus of this study and thus Eq. (3) will be
used in further analysis, if not stated otherwise.

Fresh : Dg/[nm] = (584 ± 5) − (269 ± 1) × σg (3)5

Aged : Dg/[nm] = (784 ± 11) − (382 ± 1) × σg (4)

Alldata : Dg/[nm] = (797 ± 6) − (392 ± 1) × σg (5)

4 Particle number emissions

4.1 Literature data and average values

Table 1 gives an overview of studies reporting aerosol particle number emission factors10

(EFPN) and CO emission ratios (PN/CO) from field measurements of biomass burning
smoke plumes released by vegetation fires. Very freshly emitted smoke usually con-
tains large amounts of nucleation mode particles with diameters <30 nm, but they are
rapidly lost by coagulation on time scales of minutes and have little influence on the
large scale properties and effects of atmospheric aerosols and clouds (Andreae and15

Rosenfeld, 2008; Hobbs et al., 2003). Thus, the very high EFPN and PN/CO values
from studies investigating very fresh smoke within the first few minutes after emission
(Table 1: Sinha et al., 2003) are not included in our further analysis. The three last
studies listed in Table 1 refer to aged smoke, and also have rather high lower particle
size cutoff (∼120 nm), and are thus not used in the further analysis. The available data20

is limited to flaming conditions, i.e., MCE larger than 0.9 (the study-averaged MCEs
were between 0.93 and 0.97).

To make the numbers comparable, in spite of the different lower size limits, the Le
Canut et al. data is assumed to have the same size distribution and lower particle size
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cut off as the Formenti et al. data measured in the same area using similar instru-
mentation. For conversions between the emission ratio [cm−3 ppb−1] and the emission
factor [kg−1 d.m. for PN and g kg−1 d.m. for CO] we assumed 298 K and 100 kPa.

The averaged emission factors for accumulation mode particles, not taking the
MCE relationship into account and using size limited corrected overall data, was5

(1.7±1.2)·1015 kg−1 d.m., with forest fire emission factors of (1.9±1.3)·1015 kg−1

d.m. The particle number to CO emission ratios for the overall data set was
34±16 cm−3 ppb−1, with 30±14 cm−3 ppb−1 for forest fires, that can be compared to
savanna and grass type fuels in Table 1. The data suggests a larger emission factor
and a smaller emission ratio for the forest emissions, but the differences between the10

fuels are within the standard deviation of each measurement, and we cannot show that
the difference is real.

4.2 Dependence on combustion efficiency

The possibility of an MCE effect on the emission factor is tested by F-statistics.
The emission factor for the overall data set, EFPN, shows a linear relationship to15

MCE (R2=0.53, F=61, Perr=10−14, n=57), as does the emission factor for forest fuel
(R2=0.57, F=49, Perr=10−11, n=39). Grass and savanna fuels are less conclusive,
but point towards the same conclusion, i.e., a relationship between MCE and EFPN

(R2=0.45, F=6, Perr=0.03, n=9 for savanna and R2=0.20, F=2, Perr=0.24, n=9 for
grass), even though it is a small data set, with a 100 nm lower size limit, and a20

small variation in MCE (from 0.95 to 0.98). On the other hand, there is no rela-
tionship between MCE and the CO-referenced particle emission ratios for the overall
data set (R2=0.00, F=0.3, Perr=0.78, n=57), while the fuel specific ratios are incon-
clusive (R2=0.07, F=3, Perr=0.07, n=39 for forest, R2=0.15, F=1, Perr=0.36, n=9
for savanna and R2=0.34, F=4, Perr=0.09, n=9 for grass). We thus conclude that25

there is a linear relationship between EFPN and MCE, but no relationship between
PN/CO and MCE. The spread in the PN/CO ratios and the lack of a MCE relationship
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is shown in Fig. S1 in Supplement (http://www.atmos-chem-phys-discuss.net/9/17183/
2009/acpd-9-17183-2009-supplement.pdf).

Standard fitting methods were applied to the combined data set (corrected for the
100 nm size limit) from grass, savanna, and forest fires (Eq. 6, Fig. 2), where most
of the data are from flaming conditions (MCE>0.9) (Le Canut et al., 1996; Guyon et5

al., 2005; Kuhn et al., 2009). The fittings applied only to the forest fuel data is shown
in Eqs. (S6) and (S7) in the Supplement (http://www.atmos-chem-phys-discuss.net/9/
17183/2009/acpd-9-17183-2009-supplement.pdf).

EFPN/[kg−1] = (34.4 · 1015 − 34.6 · 1015 × MCE) ± 0.8 · 1015 (6)

5 Particle mass emissions10

5.1 Literature data and average values

Particle mass emission data is frequently used in models and is more abundant than
particle number emission data, but the upper particle size limit varies between the
published data sets. We focus on the accumulation mode and thus, the upper particle
size limit should be between the accumulation mode and the coarse mode, i.e., around15

one micrometer in diameter (Fuzzi et al., 2007; Reid et al., 2005).
Here data with an upper particle size limit of 1µm, PM1, are used together with

PM2.5 data, as the analysis of the MCE relationship then is based on 50 instead of
only the 4 available PM1 data points, and the average EFPM is based on 61 instead
of 11 data points (Battye and Battye, 2002; Dhammapala et al., 2007; Kaufman et al.,20

1992; Korontzi et al., 2003; Scholes et al., 1996; Ward et al., 1991; Ward and Hardy,
1991; Ward et al., 1992; Ward, 1996; Yokelson et al., 2007; Formenti et al., 2003; Mar-
tins et al., 1996), with the two last references excluding MCE. Data reported without
relation to MCE is used only in the calculation of the arithmetic mean ± standard de-
viation of EFPM, resulting in an EFPM for the overall data of (7.6±4.7) g kg−1 d.m., with25
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larger emissions for forest fuels and smaller emissions for savanna and grass fuels
(Table 2). The average PM/CO emission ratio is (0.09±0.04) g g−1 for the overall data,
with similar fuel effects as for EFPM, giving emission ratios of PM/CO=0.13±0.05) g g−1

for forest; PM/CO=(0.08±0.03) g g−1 for savanna; and PM/CO=(0.07±0.03) g g−1 for
grass. All analyses shown here have been repeated on a dataset including also5

PM3.5, PM4 and PM0.5 data to show the limited effect resulting from adding data
with slightly different particle size limits (Tables S2 and S3 in Supplement http://www.
atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf).

The EFPM obtained in this study, both as direct fuel specific averages and calculated
using the equations obtained below (Eqs. 7–10) with fuel specific MCE averages, are10

similar to other published non-parameterized PM emission factors, Table 2.

5.2 Dependence on combustion efficiency

F-statistics analysis shows that EFPM is MCE dependent, while the PM/CO emission
ratio has no MCE dependence (Table 3). In some studies, the CO emission factor is
not given and the PM/CO emission ratio is based on the CO emission factor calculated15

from MCE and an estimated CO2 emission factor of 1580 g kg−1 d.m. (Andreae and
Merlet, 2001). The fraction of the data treated this way is between 0 and 0.42 for the
different fuel types (Table 3).

Figure 3 shows the EFPM vs. MCE data, with most of the available data from flaming
combustion. The EFPM to MCE standard linear fits for the different fuel types (Eqs. 7–20

9) and for the overall data set (Eq. 10) are shown as lines in Fig. 3, with the standard
error of the overall data fit shown as a shaded area. The forest fire emission factors
are higher than the emissions for savanna and grass fires. The overall data fit has a
larger slope than the fuel specific fits possibly influenced by the high emitting – low
MCE forest fuels combined with the low emitting and high MCE grass/savanna fuels.25

The higher EFPM for forest type fuels is a combined result of both higher EFPM,forest
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(MCE) and lower MCE in the forest case.

EFPM,forest/[g kg−1] = (93.2 − 89.8 × MCE) ± 3.8 (7)

EFPM,savanna/[g kg−1] = (66.8 − 65.1 × MCE) ± 2.5 (8)

EFPM,grass/[g kg−1] = (62.9 − 62.1 × MCE) ± 1.1 (9)

EFPM,overall/[g kg−1] = (86.1 − 85.3 × MCE) ± 3.1 (10)5

The standard linear fitting has been performed on some 30 published
studies individually, giving similar linear fits as the ones obtained here
(Table S4 in Supplement http://www.atmos-chem-phys-discuss.net/9/17183/2009/
acpd-9-17183-2009-supplement.pdf). We conclude that MCE is an important variable
to describe the particle mass emissions from vegetation fires.10

6 Particle number emission factors derived from particle mass emission factors

The following closure study is used to determine which parameters contribute the
largest uncertainty, as the available emission data on particle number, particle size
distribution and particle mass is rather sparse. We compare the measurement-based
fitted particle number emission factor, Eq. (6), to the particle number emission fac-15

tors calculated using EFPM, Eqs. (7–10), combined with different assumptions, mainly
Eqs. (2) and (3) for size distribution. The particle density is assumed not to vary with
MCE, and is set to 1300 g m−3 (Reid et al., 2005)

6.1 Average EFPN

To visualize the particle size impact on the calculated EFPN, EFPM is calculated for20

each fuel, using Eqs. (7–10) at the average MCE over all particle number emission
data, MCE=0.95 (Table 1). Three different values of Dg are used (Dg=100, 130 or
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150 nm, Reid et al., 2005), and the Dg to σg relationship for fresh particles, Eq. (3), is
used. To visualize the impact from σg, one case using the aged data set fit, Eq. (4), is
added. The effect from this change is a 20% decrease in EFPN, Fig. 4.

A decrease in particle diameter Dg from 150 to 100 nm almost doubles the particle
number emissions (Fig. 4), including the minor effect related to changing σg with Dg,5

Eq. (3). The particle number emission factors calculated from particle mass data com-
pare best to the directly measured EFPN, when using a diameter of ∼140 nm for forest
fire particles and 100 nm for grass fire particles (Fig. 4). This is in accordance with,
e.g., Reid et al., 2005, where the grass/savanna fuel particles give an average Dg of
110 nm, while forest fires give 140 nm, suggesting that forest fire particles are larger10

than grass fire particles. This difference might be even larger taking the MCE effect on
particle size into account.

6.2 MCE dependent EFPN

A number of different assumptions are used to calculate the MCE dependent EFPN
from EFPM. In Fig. 5, EFPM,overall is used as a basis for the calculation of EFPN, and it is15

evident that the measured EFPN is most similar to the calculated EFPN when both EFPM
Eqs. (7–10), and the particle size distribution are allowed to vary with MCE (Eqs. 2–3).
A much poorer fit is obtained when either parameter is held constant at MCE=0.95,
i.e., the average combustion efficiency of the EFPN data presented in Table 1. Results
obtained with a wider range of assumptions are shown in the Supplement (http://www.20

atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf).
In Fig. 6a the fuel dependent particle mass emission factors (Eqs. 7–10) are used to

calculate EFPN for each fuel, while the particle size varies only with MCE and not fuel
type, even though this was suggested in Fig. 5 and in Reid et al., 2005b. Keeping the
size variation with MCE while introducing a fuel related size difference, we assume that25

grass particles are 25 nm and savanna particles are 20 nm smaller than in Eq. (2). The
result is shown in Fig. 6b, where the emission factors for different fuels mainly collapse
onto one line, following the results in Table 1, where no fuel effect on particle number

17195

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-supplement.pdf


ACPD
9, 17183–17217, 2009

Biomass burning
aerosol emissions

from vegetation fires

S. Janhäll et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

emissions was found. This suggests that the fuel effect on particle mass emissions
might solely result from particle size effects, with similar particle number emissions for
all fires.

7 EFPN estimate for coarse particles

For completeness, the particle number emission factor has also been defined for5

coarse particles, EFPN,c, calculated both through the number ratio, and through the
mass ratio, between the accumulation and coarse modes given in the literature. All
parameters referring to the coarse mode were defined and determined in analogy with
the accumulation mode parameters, but with “c” as an index. For the coarse particle
emissions a relationship to MCE could not be established.10

Table 4 gives a literature overview of number concentration ratios between the coarse
and accumulation mode, with a median number ratio of 10−4, i.e., the number of coarse
particles emitted is 10 000 times smaller than the number of accumulation mode par-
ticles. If EFPN for accumulation mode particles equals 1015 kg−1 d.m. (Table 1) the
EFPN,c for coarse particles would be 1011 kg−1 d.m. The mass median ratio of EFPM,c15

and EFPM from Table 4 is 0.2±0.1, which together with the average EFPM of the overall
data (7.6±4.7) g kg−1 d.m. gives an approximate EFPM,c of 1.5 g kg−1 d.m.

The EFPM,c estimate is given without fuel differences, both due to scarce available
data and because a smaller effect of fuel on coarse particle emissions is assumed,
based on simple calculations. We know from the literature that grass fires emit a20

larger proportion of coarse particles than forest fires (Reid et al., 2005; Schafer et
al., 2008; Andreae and Merlet, 2001). For the ratio between EFPM and EFPM,c we
use the ratio between the emissions of total suspended particles (TSP) and PM2.5
of 0.35 for forest and 0.54 for savanna/grassland (Andreae and Merlet, 2001), as an
upper estimate compared to the other data in Table 4. Using the EFPM calculated us-25

ing Eqs. (7) to (9) at fuel-dependent averaged MCE (Table 2), we obtain an EFPM,c

for the different fuels between 3 and 4 g kg−1 d.m. (0.54×5.1=2.8 g kg−1 d.m. for grass,
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0.54×6.3=3.1 g kg−1 d.m. for savanna and 0.35×11.5=4.0 g kg−1 d.m. for forest) show-
ing a lower effect from fuel for the coarse particles as compared to the accumulation
mode particles.

To calculate the EFPN,c from EFPM,c we exemplify EFPM,c to be 1, 2.5, or
4 g kg−1 d.m., and use different assumptions for the particle size distribution. The peak5

particle size is lower for number size distributions, Dg,c, than for mass size distribu-
tions, Dg,c,M (Table 4 and Hatch-Choate equations found, e.g., in Hinds, 1998), and is
exemplified with 1, 3 or 5µm. For σg,c 1.6, 1.8 and 2.0 are used, as 1.6 is calculated
from Dg,c and Dg,c,M in Reid and Hobbs, 1998 (Table 4) while 2.0 describes the dust
mode in the ECHAM model (Stier et al., 2005), and Haywood et al., 2003 used a σg,c10

of 1.9±0.4 for the biomass coarse mode.
Table 5 shows resulting EFPN,c between 109 and 1012 kg−1 d.m., and a median value

of 2×1010 kg−1 d.m. The value of EFPN,c=2×1010 kg−1 d.m. for the particle mass ratio
agrees fairly well with EFPN,c=1011 kg−1 d.m. from the particle number ratio, keeping
the large uncertainty in the input in mind.15

8 Conclusions and outlook

We have used published data on aerosol particle number and mass emissions from
vegetation fires to calculate dynamic emission factors, as a function of MCE for different
fuel types. Emission factors and size distribution parameters for both accumulation and
coarse mode particles are presented in relation to MCE, fuel type, and mass of dry20

fuel burned. While particle mass emissions, EFPM, depend strongly on fuel type, we
found no such relation for particle number emissions, EFPN, which can be explained by
differences in particle size alone.

For the emission ratio of particle number to carbon monoxide (PN/CO) we found no
dependence on MCE or fuel type. The PM/CO also did not depend on MCE, but was25

larger for forest fires than for grass and savanna fires.
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The above results make possible an efficient description of biomass burning aerosol
emissions in dynamic models that provide information about MCE or CO emissions
for vegetation fires, and can thus be linked directly to existing emission inventories.
Models describing the climate-driven changes in fuel composition and fire evolution
would, together with these dynamic emission factors, give important input to climate-5

related changes in vegetation fire particle number emission and CCN effects.
We must point out, however, that the parameterizations presented here are based

on a very limited number of measurements and should be tested and confirmed, or
refined, by further experimental studies. Well-defined laboratory experiments should
help to improve the mechanistic understanding of particle emission/formation and ag-10

ing, and field data are urgently needed for the validation of the above or similar pa-
rameterizations. For proper validation, the experimental studies should comprise mea-
surements of particle number, mass and size distributions as a function of plume age
and combustion efficiency.
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Table 1. Particle number emission data from experimental studies: particle size range, mea-
surement equipment, smoke age, fuel type, modified combustion efficiency, emission factors
(EFPN) and emission ratios (PN/CO), only including particles larger than 100–120 nm (PN>100,
PCASP measurements) or including all particles in the accumulation mode (PN). n is the num-
ber of data points and values are tabulated as reported in the cited studies (arithmetic mean
± standard deviation when available). The Le Canut et al. data of PN>100 were extrapolated to
PN by assuming the same size distribution as reported by Formenti et al (extrapolated values
in italic). Below the horizontal line the average over the three studies included in the analysis is
reported, and the data in the last five lines refer to smoke outside the age range considered in
this study, which are included for comparison, but not used any further.

Particle diameter Equipment Age Fuel MCE EFPN>100 EFPN PN>100/CO PN/CO n References
(nm) (1015 kg−1) (1015 kg−1) (cm−3 ppb−1) (cm−3 ppb−1)

3–3000 uCPC 1–30 min Savanna n.a. n.a. n.a. n.a. 35–45 1 Hobbs et al., 2003
5–1000 CPC, PCASP Minutes Savanna n.a. n.a. n.a. 26, 30 51, 55 2 Formenti et al., 2003
8–300 CPC Minutes Forest 0.94±0.02 n.a. 1.6±1.0 n.a. 27±12 34 Guyon et al., 2005
>100 PCASP Minutes Grass 0.96±0.01 0.66±0.32 1.2±0.6 19±11 36±21 9 Le Canut et al., 1996
>100 PCASP Minutes Savanna 0.97±0.01 0.67±0.21 1.3±0.4 22±10 46 ± 14 9 Le Canut et al., 1996
10–3000 CPC Minutes Forest 0.93±0.04 n.a. 3.4±0.6 n.a. 50±9 5 Kuhn et al., 2009
Average All fuels 0.95±0.02 n.a. 1.7±1.2 n.a. 34±16 57 Guyon et al., 2005;

Le Canut et al., 1996;
Kuhn et al., 2009

> 3 uCPC < 1 min Savanna 0.94±0.02 n.a. 31±19 n.a. 550±310 4 Sinha et al., 2003
>3 PCASP <1 min Savanna 0.95±0.02 0.21±0.15 n.a. 4.8±4.1 n.a. 8 Sinha et al., 2003
100–3000 PCASP days Grass 0.98 0.4 n.a. 23 n.a. 2 Anderson et al., 1996
120–3000 PCASP 10 days n.a. n.a. n.a. n.a. n.a. 12.2RH 1 Andreae et al., 1994
>300 LIDAR days n.a. 0.97 n.a. n.a. n.a. 17 1 Browell et al., 1996
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Table 2. Particle mass emission factors, EFPM, in g kg−1 d.m. (arithmetic mean ± standard
deviation) for the three fuel categories separately and the overall data set; the number of data
points in the average (n); EFPM calculated using the mean MCE for each fuel subset, in the
fuel specific fitted equations (Eqs. 7 to 9); the number of data points in the fits (nfit) compared
to previous emission factor reviews.

Fuel EFPM, Average n EFPM (MCEfuel type) nfit EFPM, Reid et al., 2005 EFPM, Andreae and Merlet, 2001
[g kg−1] [g kg−1] [g kg−1] [g kg−1]

Forest 9.6±4.6 21 11.5±4.5 12 15±11b 10±3d

Savanna 6.3±3.0 24 6.3±2.0 24 8±2b

Grass 4.7±2.1 15 5.1±1.9 14 7±2b 5± 2
Overall data 7.6±4.7 61 7.6±3.4 50 7±2c

a Averaged over the available data, not taking burned amount into consideration. b Given with “absolute uncertainty”
instead of standard deviation. c Average weighted with burned mass (Andreae and Merlet, 2001). d Average over two
different kinds of forests, weighted with burned mass (Andreae and Merlet, 2001).
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Table 3. Emission ratio (PM/CO) and emission factor for particle mass (EFPM) for the overall
data set and the fuel specific data subsets as an arithmetic mean ± standard deviation. Both
variables presented with the correlation coefficient (R2); the F-statistic (F ); and the probability
that the F-statistic erroneously shows a relation (Perr). COcalc is the fraction of the data where
CO emissions were not reported and thus calculated as described in the text; MCE is the
modified combustion efficiency averaged over each fuel subset and the overall data, n is the
number of data points used in the analysis and ns the number of published studies used.

EFPM PM/CO COcalc MCE n ns

Fuel [g kg−1] R2 F Perr [g g−1] R2 F Perr

Forest 11±6 0.60 15 10−3 0.13±0.05 0.27 4 0.06 0.42 0.91±0.05 12 4
Savanna 6±3 0.33 11 410−4 0.08±0.03 0.05 1 0.37 0 0.93±0.03 24 4
Grass 5±2 0.74 34 10−5 0.07±0.03 0.15 2 0.16 0.13 0.93±0.03 14 3
Overall data 7±4 0.48 44 210−11 0.09±0.04 0.05 3 0.08 0.14 0.92±0.04 50 9
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Table 4. The ratio of coarse to accumulation mode particle concentrations from different studies
is given both as number ratios and mass ratios (PNc/PN; PMc/PM), together with the approxi-
mate peak particle size for the coarse particle mode for number size distributions (Dg,c) and for
mass size distributions (Dg,c,M ), where available. The fuel, or site of the burn is given in the last
column and the median of the data in the last row.

Cite PNc/PN PMc/PM Dg,c [µm] Dg,c,M [µm] Fuel or site etc.

Andreae et al., 1994 2.00E–05 savanna, forest
Hungershoefer et al., 2008 1.00E–04 4 lab, grass
Hungershoefer et al., 2008 1.00E–04 2–3 lab, musasa
Haywood et al., 2003 1.00E–04 3 Otavi plume
Radke et al., 1991 1.00E–06 <10 boreal forest
Petzold et al., 2007 2.00E–04 1–2 very old, boreal forest
Le Canut et al., 1996 1.00E–04 >3 savanna, grass
Reid and Hobbs, 1998 2.00E–05 0.1 1.5 3 Brazil, all fuels
Keshtkar and Ashbaugh, 2007 0.15 10 lab, agriculture
Fuzzi et al., 2007 0.2 4–5 Brazil
Fuzzi et al., 2007 0.1 5 Brazil
Eck et al., 2003 0.14 1.5 aged, peat and forest
Eck et al., 2003 0.1 5–10 forest
Eck et al., 2003 0.3 7 grass
Andreae and Merlet, 2001 0.54 grass/savanna
Andreae and Merlet, 2001 0.35 forest
Ward et al., 2006 0.3 grass/savanna

Median 1.00E–04 0.2
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Table 5. The different EFPN,c calculated with three different assumptions about the ratio be-
tween particle mass concentrations in the coarse and accumulation modes (∼10%, ∼30% and
∼50% of EFPM), three different Dg,c (1, 3, or 5µm) and three different σg,c (1.6, 1.8, or 2.0).
The Dg,c,M are calculated from Dg,c and σg,c using the Hatch-Choate equations (e.g., Hinds,

1998). All cases use EFPM,overall=7.6±3.4 g kg−1 d.m. for the accumulation mode particle mass
emission factor for the overall data set.

Dg,c [µm] σg,c Dg,c,M [µm] EFPN,c [109 kg−1]
EFPM,c=1 g kg−1 EFPM,c=2.5 g kg−1 EFPM,c=4 g kg−1

1 1.6 2 5.4E+02 1.4E+03 2.2E+03
1 1.8 3 3.1E+02 7.8E+02 1.2E+03
1 2.0 4 1.7E+02 4.2E+02 6.8E+02
3 1.6 6 2.0E+01 5.0E+01 8.1E+01
3 1.8 8 1.2E+01 2.9E+01 4.6E+01
3 2.0 13 6.3E+00 1.6E+01 2.5E+01
5 1.6 10 4.4E+00 1.1E+01 1.7E+01
5 1.8 14 2.5E+00 6.2E+00 9.9E+00
5 2.0 21 1.4E+00 3.4E+00 5.4E+00
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Fig. 1. The geometric mean diameter (Dg) versus the geometric standard deviation (σg) for
published fresh and aged smoke data. A bivariate linear fitting method (Cantrell, 2008) has
been used on the fresh smoke data, yielding Dg/[nm]=(584±5)–(269±1)×σg, Eq. (3), shown
as a line. The dotted line is found by fitting the fresh smoke data with the standard regression
method. All data are listed in the Supplement (http://www.atmos-chem-phys-discuss.net/9/
17183/2009/acpd-9-17183-2009-supplement.pdf).
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Fig. 2. Particle number emission factors (EFPN) related to dry mass burned versus modified
combustion efficiency (MCE) for three fuel types; forest (Guyon et al., 2005; Kuhn et al., 2009),
and savanna and grass (Le Canut et al., 1996). A standard fitting method is used on the
overall data set to find EFPN/[kg−1]=(34.41015–34.61015×MCE)±0.81015, Eq. (6), shown as a
line. Measurements for savanna and grass data used a ∼100 nm particle diameter detection
limit and have been corrected as described in Sect. 4.1.
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Fig. 3. Particle mass emission factors (EFPM) related to dry mass burned ver-
sus modified combustion efficiency (MCE) for three fuel types from ten different
studies, with the fitted equations for each of the fuel types and for the overall
data set (EFPM,forest/[g kg−1]=(93.2–89.8×MCE)±3.8, for forest, EFPM,savanna/[g kg−1]=(66.8–
65.1×MCE)±2.5 for savanna, EFPM,grass/[g kg−1]=(62.9–62.1×MCE)±1.1, for grass and

EFPM,overall/[g kg−1]=(86.1–85.3×MCE)±3.1 for the overall data set, Eqs. 7–10) shown as lines.
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Fig. 4. Particle number emission factors (EFPN) related to dry mass burned, calculated from
EFPM at MCE=0.95 for the different fuel types, Eqs. (7–10), using different particle diame-
ters (Dg) given in the legend. The geometric mean diameter Dg is related to the geometric
standard deviation σg using Eq. (3), apart from the “130 nm, aged” case, where the fit to the
aged data set, Eq. (4), is used. The calculated EFPN for different particle sizes are compared
to the measurement-based fitted equation, EFPN/[kg−1]=(34.41015–34.61015×MCE)±0.81015,
Eq. (6), at MCE=0.95. The error bars are based on the standard error of the fits for EFPM vs
MCE and EFPN vs. MCE respectively.
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Fig. 5. Particle number emission factors (EFPN) related to dry mass burned versus modified
combustion efficiency (MCE), calculated from the particle mass emission factor for the overall
data set (EFPM,overall). EFPM,overall is either constant at MCE=0,95; EFPM,overall=5.1 g kg−1 d.m.,
or varied with MCE, Eq. (10). The particle sizes are either constant at MCE=0.95; Dg=128 nm
and σg=1.65, or varied with MCE, Eqs. (2–3).

17216

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/17183/2009/acpd-9-17183-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 17183–17217, 2009

Biomass burning
aerosol emissions

from vegetation fires

S. Janhäll et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

0.88 0.9 0.92 0.94 0.96 0.98 1
0

1

2

3

4

5
x 10

15

MCE

E
F

P
N

 [k
g−

1 ]

 

 a)
All data
Forest
Savanna
Grass
Fitted, Eq. 6

0.88 0.9 0.92 0.94 0.96 0.98 1
0

1

2

3

4

5
x 10

15

MCE

E
F

P
N

 [k
g−

1 ]
 

 b)
Forest, D

g
(MCE)

Savanna, D
g
(MCE) − 20 nm

Grass,  D
g
(MCE) − 25 nm

Fitted, Eq. 6

Fig. 6. Particle number emission factors (EFPN) related to dry mass burned versus modified
combustion efficiency (MCE) for different fuels. The calculations from EFPM data are based on
varying EFPM with fuel and MCE, Eqs. (7–10), and the particle sizes with MCE Eqs. (2–3). (a)
No particle size difference between fuels is assumed. (b) The particle size has been reduced
for grass emissions by 25 nm and for savanna emissions by 20 nm, in accordance with Reid et
al., 2005.
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